

Advantageous products need the right materials

5 μm

In the background you can see SEM-micrographs of the 3 main diamond powder types for our product PCD MANT. The blocky grain structure and narrow grainsize bandwidth is characteristic.

In a high-pressure liquid phase sinter process, this diamond material (ca. 92%) together with liquefied cobalt (ca. 8%) is converted into a highly interconnected diamond aggregation with significant wear resistance. The MANT PCD.

That's why we say: Advantageous products need the right materials.
Further information can be found at www.mant.com

Generally speaking: the smaller the grain, the smoother the wire surface, the bigger the grain, the higher the tool durability.

And thus: the smoother the wire surface, the smaller the grain size of the PCD should be chosen.

The circles above illustrate typical drawing die geometries ranging from fine over medium to coarse.

We offer 1-µm granularity for wire diameters up to 2 mm (D-18). The target applications are fine and ultra-fine wire (Geometry a). This granularity can be used for tinned and copper-coated wires and to substitute natural diamond dies. PCD tools stay round longer and keep their shape longer.

Wire drawing dies made with **5-µm** granularity offer a good compromise between resulting surface smoothness and tool-durability, considering that dies "grow" when being repolished from a smaller to a higher diameter. They are typically used for wire with up to 4 mm thickness (D-24, Geometry **b**).

MANT PCD blanks with **25-µm** granularity are used for all wire diameters from 0.05 mm up to 30 mm (special-sizes made to order), not only for big wire sizes (Geometry c). For more than 10 years, the product MSD-14-025 has been used for stainless steel wire in sizes ranging from 0.2 mm up to 1.2 mm - wherever longevity is most important.

New in 2018: thermostable, tungsten carbide supported MANT PCD in sizes D-15 and D-18. Now also with 25µm granularity. Especially for high speed drawing steel wire.

MANT Polycrystalline diamond blancs

ı	Self supported	7430								
į	Туре	PC Diamond d x H in mm	Max. recomm. Die size in mm	Grain size available						
в			(65 % for FE-materials)	(1 µm)	(5 µm)	(25 µm)	40 µm			
	MSD-6	2,5 x1,0	0,5	×	x	×				
	MSD-12	3,2 x 1,5	1,0	×	×	×				
	MSD-14	4,0 x 2,0	1,2	×	×	×				
	MSD-15	5,2 x 2,5	1,5	×	X	x	(X)			
	MSD-18	5,2 x 3,5	2,0	×	×	×				

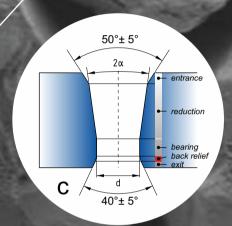
50°± 5°

2α

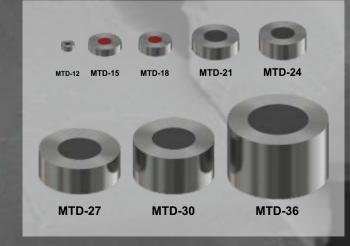
40°± 5°

b

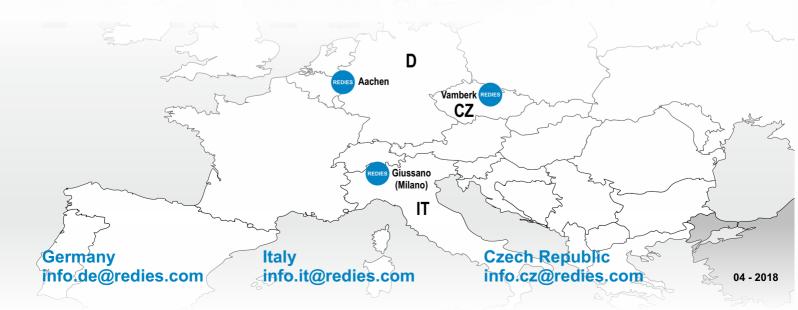
, bearing


back reliet exit

red = also thermostable available


Туре	PC Diamond d x H in mm	Total blanc D in mm	Max. Recomm. Die size in mm	Grain size available			
			65 % for FE-materials	1 µm	5 μm	25 µm	
MTD-12	1,8 x 1,5	4,0	0,8			х	
MTD-15	4,2 x 2,3	9,7	1,8	×	×	x	
MTD-18	4,2 x 2,9	9,7	2,3	×	×	×	
MTD-21	7,1 x 4,1	14,0	3,5		×	x	
MTD-24	7,1 x 5,1	14,0	4,5		х	x	
MTD-27	13,0 x 8,5	24,1	6,0		Į.	×	
MTD-30	13,0 x 12,0	24,1	7,5			×	
MTD-31	15,2 x 12,0	26,0	9,0			x	
MTD-33	15,2 x 15,1	26,6	11,2			х	
MTD-36	18,2 x 18,5	30,0	12,7			×	

10 µm


Repolishing by REDIES ...

- .. all manufacturers
- .. your geometry and sizes
- .. your data

Open data structures in the spirit of INDUSTRY 4.0

NUMMER	KERN	BRDURCHM	NEUPREIS	HERSTELLER	ERF_DATUM	SATZ	STANDORT	DATUM	ANZ_POLIER	VORDURCHM	ISTDURCHM	LEISTUNG
226797	DIA	0.26359	0.00000	THIELMANN	8/3/2015	REP	RE080917	9/12/2017	1.00000	0.00000	0.26359	1883.00000
172456	DIA	0.20000	0.00000	BALLOFFET	11/29/2001	REP	RE080917	9/12/2017	2.00000	0.25099	0.26359	6969.00000
226722	DIA	0.26359	0.00000	THIELMANN	8/3/2015	REP	RE080917	9/12/2017	1.00000	0.00000	0.26359	1883.00000
024017	DIA	0.20000	0.00000	BALLOFFET	3/13/2007	REP	RE080917	9/12/2017	3,00000	0.23839	0.26359	10431.00000
026783	DIA	0.20000	0.00000	BALLOFFET	3/13/2007	REP	RE080917	9/12/2017	4.00000	0.23839	0.26359	10431.00000
026784	DIA	0.20000	0.00000	BALLOFFET	3/13/2007	REP	RE080917	9/12/2017	4.00000	0.23839	0.26359	10431.00000
1064767	MONO	0.00000	0.00000	BALLOFFET	7/12/2012	REP	RE080917	9/12/2017	3.00000	0.25799	0.26359	4790.00000
234426	DIA	0.26359	0.00000	THIELMANN	6/22/2016	REP	RE080917	9/12/2017	1.00000	0.00000	0.26359	2748.00000
473537	DIA	0.00000	0.00000	BEIRLIM	8/9/2001	REP	RE080917	9/8/2017	1.00000	0.25299	0.30000	35548.00000
390799	DIA	0.22599	0.00000	FORTEK	8/14/2001	REP	RE080917	9/8/2017	3.00000	0.28999	0.30000	44353.00000
425211	DIA	0.00000	0.00000	BERLIM	8/9/2001	REP	RE080917	9/8/2017	1.00000	0.25299	0.30000	35548.00000
425463		0.00000	0.00000	BERLIM	8/9/2001	REP	RE080917	9/8/2017	1.00000	0.25299	0.30000	40909.00000
425481		0.00000	0.00000	BERLIM	8/9/2001	REP	RE080917	9/8/2017	1.00000	0.25299	0.30000	40909.00000
425489		0.00000	0.00000	BERLIM	8/9/2001	REP	RE080917	9/8/2017	1.00000	0.25299	0.30000	40909.00000
45879	DIA	0.00000	0.00000	BERLIM	8/9/2001	REP	RE080917	9/8/2017	1.00000	0.25299	0.30000	35548.00000
047347	DIA	0.24400	0.00000	BALLOFFET	5/10/2004	REP	RE080917	9/8/2017	3.00000	0.25099	0.30000	36843,00000
416816	DIA	0.20299	0.00000	UKD	8/9/2001	REP	RE080917	9/8/2017	4.00000	0.27900	0.33199	28280.00000
094348	DIA	0.25299	0.00000	PHILIPS	8/9/2001	REP	RE080917	9/8/2017	2.00000	0.27900	0.33199	22919.00000
F047174	DIA	0.30199	0.00000	BALLOFFET	7/20/2009	REP	REG80917	9/8/2017	1.00000	0.30199	0.33199	52450.00000
H005549	DIA	0.00000	0.00000	BALLOFFET	1/20/2011	RIEIP	RE080917	9/8/2017	4.00000	0.31900	0.33199	63846.00000
F049889	DIA	0.30199	0.00000	BALLOFFET	7/20/2009	REP	RE080917	9/8/2017	1.00000	0.30199	0.33199	52450.00000
389610		0.24899	0.00000	FORTEK	8/9/2001	REP	RE080917	9/8/2017	3.00000	0.27399	0.33199	22919.00000
637930			0.00000		10/1/1997			9/8/2017	2.00000	0.29600	0.33199	32875.00000
14148			9.00000	BALLOFFET	5/3/2002			9/8/2017	1.00000	0.24899	0.33300	28280.00000
3163360		0.10000		PHALIPS			RE080917	9/8/2017			0.36500	
51602		0.34700	0.00000				RE080917	9/8/2017	1.00000		0.36500	29774.00000
7490360				ESTEVES								
160459												
	13(6)	21,75,65,13	8.63398 	(銀/後/多	10/20/20/2	1220	HERESON F	III	6.03938			
	KED	IES - y	our fl	exible	wire o	die	makei	renea	r-by			
		0.01056	UA3300						018 85			

3 production facilities in the center of Europe

